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NATIONAL ADVISCRY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 1939

THE EFFECTS OF AERODYNAMIC BRAKES UPON THE
SPEED CHARACTERISTICS OF ATRPLANES

By Jack D. Stephenson

SUMMARY

A study has been made of the factors influencing the performance
of serodynamic brakes. The reguirements which must be met in order for
the brakes to provide the necessary control over the forward speed are
discussed for various flight conditions under which they msy be used.
Equetions relating the speed and altitude are presented for several
cases in which certain simplifying assumptions are made, For these
cases, formulas and graphs in the report furnish a means of quickly
computing the longitudinal speed variations, the dive angles, and the
rates of descent for airplanes having known drag characteristics. For
the cases to which the simplifying assumptions do not apply, it is
indicated that a satisfactory solution, which taekes into account all
of the possible varisbles (such as atmospheric density, drag coeffi—
cient, and flight—path angle).can be obtained by a step-by-step method
of calculation. Graphs are presented to reduce the time required for
step—by—step calculations. Example calculations, which show each step
in detail, illustrate the use of the graphs and formulas.

The increases in drag coefficient that are characteristic of
several types of wing and fuselage aerodynamic brakes, which have been
tested in wind tunnels or in flight, are summarized in the report.

The effect of Mach number on the drag coefficient and the effect of
partial brake deflection are included where such data are svailable.

INTRODUCTION

The continued improvement in the aerodynemic design of high-speed

airplanes has brought the normel operating speeds near to their maximum

safe speeds. As a result of low drag and of high engine output,
airplanes may under certain cilrcumstances accelerate to speeds at which
dangerous compressibility effects or structural Jloadings arise. The
trend toward higher wing loadings has added considerably to the possi—
bility of attalning dangerous speeds, especlally at the high operating
altitudes which are characteristic of many modern airplanes.
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One means of controlling speed 1s the use of serodynamic brakes.
This report is concerned with the problem of relating the drag Incresses
due to asrodynamic brakes to the control of forward speed. Problems of
buffeting, of changes iIn stability, of aerodynamic loads, and of changes
in trim, which may arise when a particular brake is used on an airplane,
are not consldered. If a sabtlsfactory brake i1s to be selected for an
ailrplane, however, the possible occurrence of such phenomena must be
investigated for the airplane and brake combination.

The increases in drag that result from the use of air brakes have
been measured in wind—tunnel and f£light tests for a large variety of
brakes. In this report a summary of_such drag data is presented. The
effect of increases in the drag coefficient upon the speed variation
calculated for a hypotheticsl airplane is 1llustrated. A procedure
for calculating the speed of an alrplane at any point in arbitrarily
specified maneuvers ls presented and discussed.

SYMBOIS

net drag coefficient ( 2—2)

ACpy  increase in drag coefficlent due to the aerodynamic

brake ( brake drag)
as

ACDB drag coefficient due to the aerodynamic brake referred

to the area of the brake ( %)

c 1ift coefficlent | Al
L qs

Dy algebraic sum of aerodymamic forces perallel to the direction
of £flight, positive toward the rear, pounds

K deceleration factor < —é— ﬁ% CDn) » per foot

M Mach number
S wing area, square feet

Sg maximum projected area of the aerodynamic brake, including
slots, gaps, and perforatlions, square feet
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true alrspeed, feet per second

vertical component of speed, fset per minute

speed change in tims intervel At, feet per second
average speed during time interval AL, feet per second
airplans weight, pounds

wing loading, pounds per square foot

longitudinal acceleration, feet per secomd squared

average longitudinal acceleration during time interval At,
Peet per second squared

wing span, feet
accelsration due to gravity, feet per second squared
altitude, feet

altitude change in time interval At, feet

indicated acceleration
normal to £1light path

indicated normel acceleratlon factor
‘ 4

dyna.m:l:c pressure < %pv2> , pounds per square foot
radius of curvature of £light path, feet

time, seconds

time increment, seconds

angle of attack, degrees

flight—path angle from the horizontal (positive for a climb),
degrees '

change in flight—path angle in the time interval At, degrees
average flight—path angle during the time interval At, degrees

alr density, slugs per cubic foot
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Subscripts
e estimated
o value at t = 0O

1 value at beginning of time interval At

CONTROL OF AIRPILANE SPEED

. Flight experience has indicated that the control of forward
speed, which 1s possible through the use of aerodynamic brakes, is of
considerable value in the operation of airplanes of all types. The
requlred action of brakes in controlling the speed differs among
various airplanes, and for any one airplane the requirements may
differ with the type of maneuver that is to be performed. For the
purpose of the present dlscussion, brakes are considered according to
their use in producing longitudinal deceleration at approximately
constant altitude, in permitting greater angles of dive at moderately
low speeds, and in avoiding dangerously high speeds.

Deceleration at Constant Altitude

It 1s to be expected that a device that controls the longltudinal
desceleration would find especial applications in the operation of
combat alrplanes. A sudden deceleration would be required’ in order
for a fighter airplane which was overtaking its target to slow down
S0 as to have a maximmm amount of time for firing. Rapid decelerations
may also be called for in traffic—control zomes during poor vislbility
in order to prevent collision.

Aerodynamic brakes may assist the pllot—in performing various
mgneuvers. If the maximum normal acceleration is fixed by the maximm
to which the pilot may be subjected or by structural limitations of the
airplane, the minimum radius of curvature of the flight path varies
with the square of the speed. Thus, a reduction in speed by the use
of salr brakes prior to and during & maneuver would effect a substantial
decrease in the minimum turning radius.

The performance of aerodynemic brakes used primsrily for speed
reduction 1s indicated by the megnitude of the longitudinal decelera—
tion in level flight. Calculations showing the variation of speed -
with time can be used to measure the comparative suitability of
different brakes on the same airplane in producing needed changes of
speed.
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Speed Control in Dives .

Aerodynamic brakes which keep the speed moderately low during dives
are needed for the performance of some tactical meneuvers. For tre dive
bomber, low speed is required as a precaution against excessive normal
accelerations during pull-outs at low altitude. In rapid descent of ,
large airplanes, the desirsbility of avoiding high forward speeds is
apparent. The breking which would be sufficient to prevent Increases
in speed may be used to gauge the performance of brakes for airplanes
in controlled—speed dives. Aerodynamic data for brakes to be used on
airplanes in such dives may be evaluated by a comparison of the measured
brake drag with the brake drag which would be required to reduce the
longitudinal acceleration to zero.

Speed Control at High Speed

The maximum safe diving speed is commonly specified as the maximum
indicated airspeed upon which calculations of loads are based in the
structural analysis. The rapid change in altitude resulting from a
steep dive at high speed means that the true speed would have to be
reduced in order to keep from exceeding the allowable indicated speed.
Calculations which show the variation with time of the speed of an
alrplane with brakes indicate whether the drag of the brakes is suffi-
clent to produce the required reductions in speed. Methods are pre-—
sented in this report to aid in meking such calculatioms.

One of the most important examples of the employment of aerodynamlc
brakes is their use in avoiding dangerous compressibility effects.
These effects take the form of changes in longitudinsl stability, such
as described in reference 1, or as other erratic behavior of airplanes
or their controls. Without brakes, pilots of modern high—speed cormbat
airplanes are not alwaeys able to avoid speeds at which such compressi—
bility effects appear. -

A method of calculation which shows the variation with time of
speed end altitude of an airplane throughout various maneuvers can be
used to determine whether the aerodynamic hrakes are adequate to keep
the maximim Mach number below a certain eritical value.

ANATYSTS

The foregoing dlscussion has indicated wvarious instances wherein
a need for aerodynamic brakes has been observed. The drag Iincrements
due to air brakes do not by themselves afford & complete measure of
the degree to which brakes meet these needs. Brake designs can be
evaluated by studies which demonstrate the effects of the brakes upon
the forward speed of airplanes. These effects are anslyzed in this
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report through.a study of equations of longitudinal motion of alrplanss,
of the validity of varlous initiasl assumptions, and of the accuracy of
approximate calculetions.

Algebraic Anaslysis

The deceleration of an airplane with alr brakes depends upon a
number of factors, such as variatlons of £light-path angle, of alti—
tude, and of speed, as well as upon the characteristics of the brakes
themselves., In order to separate the effects of the brakes from the
other effects, the problem is simplified by assuming that one or more
of these factors is constant. The effects of various air-brake
designs and locations on the variation of speed with time may then be
reedily determined. The following sections present enalyses employing
such simplificetions.

Level—flight deceleration.— In level flight, one form of the
equation of longitudinal motion of an airplane is

ao__g
at w Do (1)

where Dp 1s the algebraic sum of the aerodynamic forces acting
parallel to the flight direction, positive being teken toward the rear.
The value of D, 1s affected by any changes in the draeg of the alr—
plene, which may result, for example, from variations in angle of
attack, variations of Mach number, or changees in the setting of the
air brakes, Any factors that cause the thrust to change, such as
variations in engine output, variations in propeller efficiency, and
effects of velocliy upon propeller or engine thrust alsc influence Dy.
It is convenient to express Dp 1n the form of a force coefficlent

C'Dn=

Loy
2P

Substituting in equation (1),

I Cp, 1s constart, this expresdion may be integrated to give
1

ViR w (1/95) (2)
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where

The quantity K is a measure of the effects of altitude, wing loading,
and net drag coefficlent upon the longitudinasl acceleration and in this
report is referred to as the "deceleration factor." The value of the
deceleration factor may be obtained for an airplane from figure 1(a),
which takes into account the effects of altitude and of wing loading,
and figure 1(b) which includes the effect of the net drag coefficient.

The velocity variation given by equation (2) has been plotted in
figure 2 for four initial speeds: 300, 500, 700, and 900 feet per
second. Curves are given for various values of deceleration factor K.
Comparison of the slopes of curves for equal values of K shows a
considerable increase in the deceleration as the initial speed Increases.

In deriving equation (2), it was assumed that Cp, Wwas constant
during the time Interval considered. For this assumption to be wvalid,
the engine output must be constant and the effects of speed changes on
the thrust and drag coefficlents must be negligible. If aerodynamic
brakes are extended at the start of the time interval, the resulting
increase in drag must be so rapld that it can be approximated by an
instentaneous increase.

It is obvious that assuming Cp, (or K) constant will in some
cases lead to large errors. However, the results can represent the
actual velocity variations fairly accurately under certain conditions.
Below the Mach number of drag divergence the variation of airplane
drag coefficient with Mach nunber is generslly small. The effect of
a delay due to the time reguired for full extension of the air brakes
could introduce a large discrepancy; however, a rapid rate of exten—
sion is an-essential characteristlc of brakes which are to be used
at high speeds.

It is possible to express variations in as a series of
instantaneous changes occurring at chosen time intervals during the
deceleration. The variation of speed with time is then given by
equation (2) with values of K computed for each interval and values
of Vg, successively determined as the velocity at the end of each
preceding interval. The same variation may be obtained from figure 2
by shifting along the time axis portions of the curves having these
velues of deceleration factor and initial velocity. The curve thus
obtained is conmtinuous but changes slope abruptly at the start of each
interval.
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Constant flight—path inclination.— When the flight path is in—
clined, the component of weight W parallel to the direction of motion
mist be included, and the equation is

&%

=& (-, -

where 7 1s the flight-path angle, positive for climbing flight. BSub—
stituting K as in the case of level flight,

av

3 =K® -gsiny (3)

The assumption can again be made that K does not vary during the
period of time being considered. Then {as shown in reference 2) equas—
tion (3) integrates as follows to give the velocity variation for an
airplane in a dive or climb at a constant angle:

If 7y 1s negative and ML?K <Vo, vwhere L =-—g sin y
Vv = YL/K coth I:A\/L/K (Kt + cl)} (4}

where

VoK +
cy =1 VEE loge oVE + VT

3 JL
1t VL/E>V,,
- J/L/K tam [«/f/_K (K't'l'Cg)] - (3

where

) VI +7, VK
CZ—EN/K_/; logeﬁ_voﬁ

If 7 1s positive,

VY = N cot [N(K‘b+ca)J (6) . o
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where
N = 4/ -L/K

and

Cq = 3 cot™ (Vo/N)

In assuming that X 1s constant the same approximations are made
as in the case of level flight, together with the additional assumption
that the density does not vary as & result of the inclined flight. It
is necessary to estimate an average value of density, and, for large
changes in altitude, some improvement in accuracy can be gained by
dividing the time under consideration into shorter intervals and making
separate calculations for each interval.

Constant—speed dive.— If there is adequate control over the drag,
an airplane can be dived at any angle at constant speed. Such control
requires a net drag coefficient given by the relation

p, - - 2(W/S)sin 7y

Ve

For most airplanes having éven moderately high wing loadings and low
drag, however, it 1s not feasible to provide air brakes effective
enough to prevent increases in speed under all conditions. The com—
bination of factors which govern the maximum sngle for a constant—
speed dive can be determined from figure 3. This figure shows the
relation between forward speed, angle of dive, and rate of descent.
The other variables which affect the dive, such as altitude, net drag
coefficient, and wing loading, are agein included in the single quan—
tity K. Figure 3, uBed in conjunction with figures 1(a) and (b),
permits graphical solution for any one of these quantities when equilib—
riunm exists. :

An indication of the separate effects of altitude and speed upon
the net drag required for equilibrium is given in Ffigure 4. Wing
Joadings of 30 and 50 pounds per square foot were assumed. On the
left in figure 4 the drag coefficient is plotted against altitude for
a vertical dive.,. It is apparent that unless the sirplane speed is
very high, the equilibrium drag coefficient is large even at low alti-—
tudes and becomes extremely large st high altitudes. On the right in
figure 4, curves of constant drag coefficient are plotted against the
dive angle. The drag coefficient as a function of altitude and
airspeed may be found for any dive angle by reading CDn correspond—
ing to the ordinaste from the left part of the figure at the desired
" value of dive angle.
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Graphical Analysis

As the number of variables in the equation of motion is increased,
it~ becomes impractical to obtain an accurate soclution by direct inte—
gration of the equation of motion along the flight path. Because of
the arbltrary menner in which some of the quantities Involved can be
varied, a method of calculation in which specific variations of these
quantities are assumed would place untenable restrictions on the use—
fulness of the solution. Among the quantities which cannot be defined
mathematically by expressions sultable for all problems are the follow—

ing:
(a) Variation of engine output with time
(b) Variastions of drag and thrust-with Mach number
_(c) Variation of flight—path angle with time
(d) Variation of drag with lift

(e) vVariation of drag with time when the air brakes are
operated

These variations, which are either arbitrary or empirical, and the
variation of atmospheric density with time can all be taken into
account if the calculations are made by graphical means. The calcula—
tions cean be performed by a step—by—step method in which the longitudi—
nal acceleration in each step is obtained from graphs that have been
prepared. The change In veloclty can then be ascertained as the inte—
gral of the acceleration with respect to time. This integral may be
evaluated graphlcally, but it has been found that the integration is
sufficiently accurate if trapezoldsl elements of area are assumed and
an arithmetical evalustion is used.

Constent flight—path inclinstion.— The longltudinal acceleration
(or deceleration) at the beginning of the interval of time being
studled is determined by the known or assumed initial flight conditions.
The acceleratlion at any later time, however, cannot be computed
directly, since it is a function of speed and altitude, the values of
which are not known. This acceleration may be found by dividing the
total time interval into & series of increments and calculasting, step
by step, the conditions at the end of each increment. The step-by—step
calculation 1s made by estimating the speed and altitude at the end of
each Increment upon the basils of the known conditions at the beginning
of that increment. With these estimated values, the longitudinal accel—
eration at the end of the increment may be computed. The speed and
altitude at this time may then be calculated to greater accuracy and
compared with the estimated values. Although this procedure amounts to
a method of successive approximations, it has been found that the




NACA TN 1939 _ 11

velocity end altitude can usually be estimated so accurately that the
Pirst approximation is sufficient. If 1t is not, a second approxima~
tion may be made, or else smaller increments of time can be chosen.
The time increments should be small emnough so that all important
chenges In acceleration are taken into account, but large enough to
keep the number of steps to & minimum,

The change in altitude during the time At for flight with a
constant flight-path angle is

Mh =T (At) sin 7 (7)

where V is the average velocity. The estimated altitude change for
each At is given by this relation in which V 1s the average
veloclty estimated for that incremental tims.

The longitudinal acceleration at the end of the time increment is
given by figure 1, which includes the effects of altitude and wing
loading (fig. 1(a)), of drag coefficient (fig. 1{b)), of velocity
(fig. 1(c)), and of flight-path inclination (fig. 1(d)). When the
speed variation of an airplane at a constant £light—path inclination
is being calculated, the valuss of flight—path angle and wing loading
are known. The altitude and speed are estimated, as indicated in the
preceding paragraphs. The net drag coefficient, which may be a
function of the flight Mach number and the airplame 1ift coefficient,
is obtained from experimental or theoretical date using values of Mach
nurber and 1ift coefficient computed from the estimeted speed and
sltitude.

The increase or decrease in velocity during the time At, assumed
to be given by the area of the trapezoidal element under the curve of
scceleration against time, is

Av=32=(al+a)At

in which a; and & are the longltudinal acceleration at the begin—
ning and of the end of the time increment. The velocity and Mach pumber
which result from this veloclty change can now be compared with the
estimated values to ascertain whether the estimates are accurate.

Varlable flight—path inclinatlion.— Because proposed aerodynamic
brakes are to be designed for use in flight et any time, a method for
calculating the speed of an airplane during any flight evolution is
needed. The calculations for a dive at constant angle discussed in the

preceding section would not accurately represent a steep dive of a
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high—speed airplene because a large part of the latter maneuver would
consist of the dive entry and pull-out. The effects of curvature of
the flight path can b€ evaluated by an extension of the graphical
method just described.

When the airplane is following a path of increasing or decreasing
inclination, a calculation of the changes in altitude is complicated by
the necessity of extrapolating along the curved path. One means of
making such an extrepolation is to assume that the airplane follows a
path consisting of a serles of circular arcs. The curvature of the
flight path, which is a function of the forces normal to the direction
of motion, is evident to the pilot as a normal acceleration. In order
to permit the changes in altitude to be expressed as a function of the
normsl acceleration felt by the pllot, motion in a vertical plene is
first considered. The altitude change during the period of time At
can be computed by the relation

Lh =1 [cos 71 — cos (71 + AY)] (8)

where r is the radius of the arc of the flight path, ¥, 1is the
f1light=path angle at the beginning of the perlod, and Ay 1is the
angular change In the direction of motion during the time At.

The actual acceleration normal to the direction of flight is equal
to the indicated normal acceleration minus the normel acceleration due
to the weight of the sirplane. If n is the indicated normal accelera—
tion factor, :

X§.= g (n— cos 7) | ' (9)

In figure 5(a) the acceleration factor n is plotted against the
quantity (n—cos 7) for values of 7 from0°to 90°. The curves for
negative values of 7 are the same as for positive values.

Figure 5(b) presents the variation of airspeed with (n—cos ¥) for
constant radii of flight—~path curvature. Example guide lines show how
the radius may be found by projecting the abscissa from a point in
figure 5(a) to the lime for cos 7 = 0 (7 = 90°, positive n) and con—
tinuing)at this ordinate to the desired value of average ailrspeed in
part (b).

Figures 5(c) and 5(4) give a graphical sclution for Ay as a
function of (n — cos 7), V, and At. The graphs were obtained from
the following equations. Since r 1s considered to be constant during
the time interval At,
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—_ 4 - ¥
57.3dt r

Substituting g from equation (9),

ay _ n—cos 7
% =13 e~——+

from which, by using small finite time intervals s Ay may be computed
as _

Ay = L ax
Tt

The estimated average speed Ve during the time At is used in calcu—
letions for radius of curvature and dy/dt. In addition, an estimate
of the average flight~path inclination is necessary to determine the
value of the abscissa (n—cos 7). The accuracy of this estimate can be
checked as soon as Ay has been found, if it is assumed that 7 is
the initial angle plus half the increment.

Figure 5(f) shows the variation with Ay of the quantity
[cos 72 —cos (71 + Ay)]. There are two sets of values of 7; identi—
fying the curves, one of which applies when Ay is positive and one
when Ay is negative. This.dual labeling is used becsuse the curves
have been plotted on only one side of the vertical axis. The algebraic
sign of Ay may readily be ascertalned since it is the same as the
sign of the quantity (n—cos 7). When the ordinate of figure 5(f) and
the radius of flight—path curveture, Pigure 5(b), are known, the change
in altitude is given by figure 5(e). Although the algebraic sign of
the change in altitude is not shown in the graph, in most cases it is
evident from the problem. If the sign is not apparent s & simple
dlagram showing 7, and Ay will indicate whether the altitude increases
or decreases during the time At.

Tt is seen that figure 5 cannot be used when the flight—path
radlus becomes very lerge. In this case the altitude change may be
calculated with sufficient accuracy from equation (7).

The graphical solution for the change in altitude is arranged so
as to be used directly with maneuvers in a vertical plane which are
identified by the magnitude of the normal acceleration or load factor.
For maneuvers not wholly in a vertical plane, part of the total load
factor results from accelerations in a horizontel direction and does
not affect the altitude. TIn this case the value of the load factor to
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be used with the graphs 1s the component measured normsl to the flight
path in a vertical plane tangent to the flight path.

The procedure in the calculation of the speed changes within each
time increment is the same with a variasble flight=path angle as with a
constant angle., The flight—path angle and the altitude are progres—
sively evaluated for the beginning of each time interval and their
velues are estimated for the interval by the method just described.
The acceleration of the end of the inerement At is obtained graphi-—
cally (fig. 1) and the velocity is computed. Step-by-step calculations
furnish the velocity variation during the complete interval being inves—
tigated.

DRAG CHARACTERISTICS OF AERODYNAMIC BRAKES

The characteristics of various aerodynamic brakes have been inves—
tigated in wind—tunnel and Flight tests. (See references 3 through 7.)
Results of such tests are summarized in this report. Data are presented
in the form of increments in drag coefficient which are attributable to
the brakes., It 1s to be expected that in some cases such Increments are
affected by the particular location of the brakes on the wing, the
fuselage, or elsewhere, and by thelr proximity to other components of
the airplane. The alr brakes shown are representative of Installations
in which alr brakes are added to typical fuselages or at different
locations on wings.

Geometric data and incremental dreg coefficients for the aerocdy—
namic brakes shown in figure 6 are presented in table I. These data
indicate increments in the drag of the airplane which are small in
comparison with the values required in a steep dive for an airplane
having a moderate wing loading (fig. 4). Increased drag can be cobtalned
by increasing the relative size of the brake. However, increasing the
slze is practical only within the limitations of available space into
which the brake may be retracted. The size 1s limited also by conslder—
ations of welght of the structure trensmitting the aerodynamic loads,
and by the effects of large brakes upon the trim, stability, and
buffeting of the airplane.

Table I indicates that the drag coefficlents (based upon the areas
of the air brakes) vary over a wide range, depending upon the shape and.
location of the brake on the airplane. The lowest drag coefficient was
measured for the picket—Pence type of brake (type N). This low value
of brake drag coefficient might be expected since the brake area used
a8 a reference is more than twice the actusl frontal area. The highest
drag resulted from solid brakes at forward positions on the wing
(types F and G). This forward location of the brakes results in a
spoiling action which causes changes in the 1ift as well as drag.

Since the drag increments in table I are for. zero lift, a part of the

.
"l
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drag 1s attributable to the change in angle of attack necessary for the
lift to be constant. Because the rate of change of drag with angle of
attack for 1ift coefficients near zero is small, the effect of such an
angle—of-attack change is not large for the dats presented. Apparently,
therefore, the large drag vaelues of the spoller—type brakes result from
changes 1n the flow over the wing.

From the discussion of the functions of aerodynamic brakes, it is
evident that they should be designed to be effective throughout a wide
range of conditions. There should be a smooth increase in drag as the
brake 1s extended, permitting any position between fully open and
closed to be selected with a corresponding control over the decelera—
tion. The variations of drag coefficient with percent extension for
brakes of several types are shown in figure 7.

The effect of Mach number upon alr-brake drag is dependent upon
the particular Instellation. The variations of incremental drag
coefficlent with Mach number for two aerodynamic brakes (of type D) on
a rectangular wing are shown in figure 8. The drag characteristics are
affected to a large extent by the 1ift on the wing. At an angle of
attack of —1.0°, the rate of rise of drag with Mach number became
greater as the Mach number increased from 0.3 to 0.775. At an angle
of attack of 3.0°, the drag increased with Mach number up to a Mach
number of 0.7 end then began to decrease. The drag coefficient due to
the fuselage side brake, shown in figure B, increased nearly wmiformly
with Mach number throughout the range of Mach numbers from 0.3 to
0.875. The drag coefficient due to the Puselage dive—recovery flaps
(type P) increased rapidly with Mach number above 0.6, rising to 161
percent of its low-speed velue at a Mach number of 0.8.

EXAMPTE CALCULATTONS

Examples are presented to illustrate the procedures for calculat—
ing the varistions with time of the forward speed and altitude. These
calculations are for an airplane with a wing loading of 50 pounds per
square foot, initially flying at a true airspeed of TOO feet per second.
An initial altitude of 25,000 feet was assumed and some additional
calculations were made assuming an initial altitude of 10,000 feet to
indicate the effects of this reduction in altitude.

The longitudinal aerodynamic forces on the zirplane can be repre—
sented by the coefficient

Cpy = Cpy + Cpp + FCL® + ACp

where the terms are defined as follows:
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Cpy, drag coefficient of the airplane without air brakes, exgluding
the induced drag '

Cpp force coefficlent, either drag or thrust, due to the propulsion
unit

=i

induced drag factor

ACp increment in drag coefficlsnt resulting from the extension of
serodynanic brakes

Level Flight~

The speed variation for level flight is given by equation (2) in
which it is necessary that CDn be constant.

The followlng coefficients have been assumed:

Cpy + Cpp = 0.013
F = 0.060
FCrZ = 0.001

0.100

ACp

0.114

CDy

For an altitude of 25,000 feet,

o g
K=Con3%/5
= (0.11%4) °'°°é°66' <3§62> = 0.0391 X 10~ per foot
v 1 _ 25,60

Kt +(1/V,) t + 36.6.

For an altitude of 10,000 feet
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0.064k4 x 10™° per foot

~
]

15,500
t +22.2

The relations for speed as a function of time are shown in figure 9 for
level flight. Figure 9 indicates that, by reducing the altitude from
25,000 to 10,000 feet, the time required for a given speed reduction is
decreased by 1!-0 percent.

Constant Dive Angle
The variation of speed with time during the first 15 seconds for
a constant—engle dive has been calculated for the same assumed coeffi-—
cients. A dive angle of 60° was assumed.

Initial altitude, 25,000 feet

Estimated average altitude, 20,500 feet

K = 0.0000458 per foot (fig. 1(b))

L =— siny = (32.2) (0.866) = 27.9 feet per second sguared

¥ L/K = 780.5 feet per second

Since VL/K is greater than Vo, equation (5) is used.

Cz = % VK/L logg L + V° JE _ = 0.001866 X

VI - v, ¥E
Vv = 780.5 tanh [780.5 (0.0000458t + 0.001866)]
Initial altitude, 10,000 feet :

Average altitude, 5,000 feet

K = 0.0000752 per foot
v L/K = 609 feet per second

Since #L/K is less than Vg, equation (k&) is used.

V = 609 coth [609(0.0000752t + 0.002187)]
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The relations for speed as a function of time when the alrplane is
in a 60° dive are shown in figure 9.

A more accurate solutlon results from a step—by—step calculation.
The velocity relations have been calculated by this method for com—
parison with the relstions given by the equations. In order for the
results of the step—by—step calculations to be comparsble to the formi—
les, the assumption is again made that there is no variation in Cp,.
However, the effect of the variation in density is included, instead of
assuming an average value. The step-by—step calculations for an initlal
altitude of 25,000 feet are presented in teble II and the results of the
calculations are shown in figure 9.

Calculations were made also to .indicate the effect of a lag in the
time for the drag due to the alr brakes to reach its full value. It
was assumed that the increase in drag caused by extending the brakes
takes place during the interval between 1 and 2 seconds after the brake
actuation is started. The amount by which the curve is displaced’
(fig. 9) indicates the galn in braking effect that can be realized by
designing the brakes for minimum delay in opening.

It is seen from the slopes of the velocity curves in figure 9 that
a change in flight—path angle from level flight to a dive of 60° results
in a change from an initial deceleration of 18 feet per second squared
to an inltial acceleration of 6.8 feet per second squared for the
assumed alrplasne with aerodynamic brakes at an altitude of 25,000 feet.

Entry Into a Dive

An example in which the flight—path angle is varisble 1s provided
in the calculatlions of the speed during a dive entry. The same initial
speed, altitudes, and coefficients as in the preceding example are used.

Tt 18 assumed that the alrplane is flown so that from level flight-
the indicated normal acceleration factor decreases to —1.5 within the
first—second and is then held constant until the sirplane is in a 60°
dive. The detailled calculations are presented in table III for an
initial altitude of 25,000 feet. The results, plotted in figure 10,
show the variation of longitudinal acceleration, dive angle, and speed
with time for initial altitudes of 25,000 and 10,000 feet.

CONCLUDING REMARKS

Aerodynamic brakes afford a means of avoiding undesired increases
in speed during the operation of an airplane, make possible rapid
deceleratiomsin flight, and allow a considerable increase in the angle
of descent at constant speed. A measure of the utility—of aerodynamic
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brakes 1is provided by calculations which show how the speed of an
airplane in & specified maneuver is altered by the employment of the
alr brakes.

Equations are presented in this report which permit a rapid cal—
culation of the speed changes with time. TUse of the equations results
in close approximations to the values obtained by more accurate
methods. The equations are not general, however, and apply only to
several specific problems. The speed during a maneuver can be accurate—
1y calculated as a function of time by a step-by-step procedure. The
graphs presented in this report substantially reduce the time required
to make such calculstions.

Ames Aeronautical Iaboratory,
Nationsl Advisory Committee for Aeronautics,
Moffett Field, Calif., May 31, 1949,
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TABLE I.— SUMMARY OF THE DRAG CHARACTERISTICS
OF VARIOUS AERODYNAMIC ERAKES2
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TABLE II.— CALCULATION OF THE VARIATIONS OF ATRSPEED WITH
TIME FOR AN ATRPLANE IN A 60° DIVE FROM AN ALTITULE OF

25,000 FEET. WING LOADING, 50 POUNDS PER SQUARE FOOT

t At Yo Ve Lh h Cp, 'Y e g v
(mec) | (Bec) |(£t/sec) {(£t/sec)| (r3)! (£t) e/e (£t/eec®) | (£t/Bec®) | (£1/Rec) | (£t/mec)
0 0 - - ~ —125,000{0.114 | 0.27 8.7 - - 700
1 1 09 Toh ~610 | 24,390 | .11k| .2k 1.7 8.0 8.0 708
2 1 5 T2 -620 | 23,770 .114| .20 6.4 1.0 T.0 715
. L 2 25 720 | -12hko {22,530} .13%| .17 5.5 6.0 12.0 27

6 2 37 732 | 1270 {21,260 .11k| .13 h,2 k.9 9.8 737
8 2 Thi ho -1280 | 19,980 | .11k] .07 2.3 3.2 6.k Th3
10 2 ™6 s | 1290118, Lk ,03 1.0 1.6 3.2 Thé
h h ™o 5 | -2580 [ 16,130} .114§ -Gk -1.3 -0.1 -0.% Th6
18 h T36 Thl | 2570 13,540 | .114]-.11 -3.5 -2.h -9.6 736

Example caloculmtion:

An airplene in a &0° dive at a speed of 70O feet per second instantanscusly extends z2ir brakes at

time t = 0.

Drag cosfficient of mirplana without air brakes, Cp = 0.0Lh,

Dreg Incremsnt due to alr brakes, ACp = 0,100.

At =0

t = 1 8ec

t = 2 sec

h = 25,000 £t
af/g = 0.27 (Ses guide lines, fig. 1)
a0 = (0.27) (32.2) = 8.7 fi/pec®

Aty = 1 gec

Yo = 700 + 8.7 (1) = 709 ft/sec

g'-, =2 (.'?00 + 709) = Tok ft/sec

&h = Vq At 8in 7 = (TO4) (1) (~0.866) = —610 £t
h = 25,000 —610 = 2%,390 £t

e/g = 0.2k (fig. 1)

a; = (0.2%) (32.2) = 7.7 £t/se0®

2 =1(8.7+T7) =82 £t/aec®

&V =& At = 8,2 ftfaec

Y =700 + 8 = 708 £t/sec

Atz = 1 Bec
(82 — 20) _A_tg]
2 it

= 708 + (1) [7.7+LT—;M%}]

Vo =7V + Atz [a.l-!-
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TABLE ITI.— CALCULATION OF VARIATIONS WITH TIME OF AIRSPEED AND
FLIGHT-PATH ANGLE FOR AN AIRPLANE ENTERING A 60° DIVE. WING
LOADING, 50 POUNDS PER SQUARE FOOT. INITTIAL ALTTTUDE,

25,000 FEET

& At Ve Yo 7 ar P i s H Y- 4 \

(eso) | (se0) | (rt/uac) | (rt/asc)} P |(ase) (20m) | (2sg) {1705| (re) | (£%) (1’;{',‘1 o | B { a/s | (r1/asc®) | (st/aec?) | (t/as0) {(Lt/uea)
0 0 - -- 1 {ee-}---} 0 f==-}-—=-1lo5,000} 26 |0.19{0.015}-0.08 -2.6 _—— b= 00
2 b & &3 -5} -3.2f -6.5] —6.516.0 —olekgn | 293 |—) .18} 0| -162 5.2 5.2 [
1 1 69). &6 1.5 3.3 -6.6] ~6.6{6.0 —plewep | 258 l-29f .16} 81 %% 8.9 -8.9 &1
2 1 6% SI;E . |5 -9.9] —6.7]~13.3 [6.0 60| 24,910 } 2h€ [-30] .L1B] 35| -LI.3 ~13.% ~13.% 678
E 1 ? 6 .3 |-26.6] -6.61-19.9 {5.9 —180| 2k,730 | 28 =31} .11B] —22 =T.1 5.2 5.2 5]
1 “2 656 -1.5 | -23.2| ~6.6]-R6.515.7 ~260{ ek, A0 | 2 —32[ .18] -0 -3.2 ~5.1 5.1 2

[} 2 66k ~1.%]=33.0| —=13.0| =39.5 | 5.9 70| 23,900'] 2h5 [—=30f .18 .06 1.2 -0.6 -1.2 63
8 2 gg 665 ~1.5 |-45.7] 22.0] B1.5 | 6.1 =231 | 2 —29{ .18} .20 6. b1 8.2 671
a5.5 1.5 676 -1.5]{.-55.7| -8.5]-60.016.7 —Bko| 22,200 | 272 | —28] .18 3 T.h 6.9 10.3 81
12 2.5 700 650 b x| %.0] 0 |-60.0] » {°-Akoo| 20,800 | 298 A13) . 5.8 6.6 16.5 &4
1% 3 ne 705 51-60.0] 0 |-50.0] = =383 | 18,970 | 332 o8| .13} .o9 2.9 k.3 12,9 k3

8y 20,0+ 51,5 = 8.5°. Fa 515 '%z = 55.7°. At = 1.5 nec {f1gs. 5(c) anl (1) for Ve = 670 ri/sec)

é

byormal scceleration faotor for o steady 60° dive, n = cos —60°) = 0.%
%h = ¥ &t sin(-60°)

Lxample oaloulation:

An airplane begine a dive from level flight at 700 feet per second, reaching an indiosted rnormal socsleration of —i.5g during tha first second, ani
maintaining this acceleration until the dive angle im &a°. R

Net. drag coefficisat of the airplane, Cp, = 0.013 + 0.06Q c,—_‘ * Mp
Dreg inorezent dus to air brekes, 4&Cp = 0.100

At t =0
y = 0, Prooseding as in the cane of comstant 7 (tabls II), afg = ~0.08, a = 2,6 tt/aec”

t = 1 sec

H ilnunud,oomidbrimtnt Cp=0.01%at tmwQ anl’ Giy-OL'LBlt t = L0,
2 = ~11 ft/nec®

Vo = 700 — 11 (At) = 689 ft/sec (At = 1 meq)
nw==1.%
n-ocos 7 =-2.5%, for ¥ = 0°(rig. 5(a))

Yo = 12 &y = /2 (6.5) = 3.2°(figs. 5(c; and {2). This may possibly require more tban
than a single trial in soms instanc

& = —6.5° (rigs. 5(a}, (b), amd (0))
r/1000 = 6.0 (See guide linss, for sxample 1, figs. S(a) and {b})
&h = ~30 Tt (rigs. 5(e) and (f) Kinus sign chosen because a dive has baen specified)
R = 25,000 =30 = 26,970 £t
Qo = 1/2 o¥e® = 253 1bfag It
o - LAL0) o

s/g = -0.%0 (fig. 1)
¥ = 0 -33-,",3 (~0.08 -0.50) (1) = &1 ft/seo

To show that the originel estimte vas close encugh to give the correct velooity, the caloulations have been repsated in the table with
Vo = 691 Tt/oec. This againp gives ¥ = 691 It/sec.
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Figure 5.— Graphical seclution for changes of altitude end flight—path angle.

'A larger copy of this figure is enclosed In an envelope at the end of the report)
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Typical Section

Plan View
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(c] Fuselage air brakes.

Figure 6 — Concluded.
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Figure I- Graphical solution for determining longitudinal acceleration.
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